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Abstract—Based upon Lekhnitskii’s formulation and the Stroh formalism, the structure of the
asymptotic solutions has been examined for the boundary layer on the wedge type cross section of
a laminated composite strip. The composite strip is assumed under the so-called generalized plane
deformation, which includes tension, bending and/or torsion by the terminal tractions as well as the
generalized plane strain problem. The solution structures are obtained, with the aid of numerical
calculation, for various kinds of wedge geometry including the free edge and the delamination
cracks with the crack faces opened or closed. Finally the nature of the asymptotic solutions is
discussed, including the mode mixity of singular stress field ahead of the wedge tip, it is found that
for a free edge problem the mode mixity of the singular asymptotic traction vector on the interfacial
plane near the free edge remains invariant under varying types of remote loadings once a pair of
adjacent materials (or ply orientations) is given and that accordingly one single scaling parameter
governs the near field response.

1. INTRODUCTION

Deformations of a laminated composite inherently involve a boundary layer region on
which the deformation field is locally distorted owing to material or geometric discontinuity
such as ply interfaces, free edges, cracks or cut-outs. In such a boundary layer, there are
often found local stress singularities and inherently three-dimensional states of complex
stresses. Moreover, the high local stresses and associated deformations caused by these
geometric and material discontinuities often result in undesirable delamination and trans-
verse crack initiation and growth, leading to final fracture. Therefore, development of an
analytical method that can provide insight into a boundary layer region is of foremost
importance to the analysts. The interfacial or transverse crack problems and free edge
problems are among typical examples concerning boundary layers in mechanics of com-
posite laminates, and they have been among the subjects under intensive investigation
during the last two decades.

There are two lines of approach to plane problems in the theory of anisotropic
elasticity. Lekhnitskii (1963) introduced the complex potentials for stress to treat the
generalized plane deformation problems. He applied the compatibility equations ultimately
to lead to a set of coupled elliptic partial differential equations for the complex potentials,
and relied upon the complex characteristics for the elliptic partial differential equation to
obtain the general representation for solutions. On the other hand, Eshelby et al. (1953)
and Stroh (1962) began with a simple representation for displacement fields finally to reach
the so-called Stroh formalism for generalized plane strain problems. The Stroh formalism,
adopted by researchers in the material science community, has been applied mainly to the
generalized plane strain problems including plane strain or plane stress problems related to
dislocations and interfaces in the crystals.

Wang and Choi (1982) employed Lekhnitskii’s formulation to obtain the solution for
a free edge problem under extension. Subsequently Wang (1984) obtained the solution for
a delamination crack under extension in a similar method. In these works, the particular
solutions for stress were assumed to be polynomial functions in the beginning, and finally
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reduced to a constant for uniform extension. On the other hand, Zwiers et al. (1982)
made a finding based upon the Stroh formalism (Stroh, 1962): the possible existence of
logarithmic particular solutions for stress in free edge problems under uniform extension.
The uniform extension treated by these authors is one of the most fundamental defor-
mations; however, it occurs, in general, only for a laminated composite with no elastic
couplings: curvature and twist as well as extension will occur even under the uniaxial
tension of a laminated composite with non-zero coupling compliance. Moreover, the results
from Zwiers et al. (1982) suggest that particular solutions for stress may include logarithmic
functions under curvature or twist as well as under the uniform extension. Unfortunately,
neither complete asymptotic solutions (except those for the uniform extension) nor the
nature of the solution have been reported to date, although the solution is of paramount
importance in association with the understanding of fundamental fracture behavior of
composite laminates under more generic loadings.

In this paper, we examine the asymptotic solutions (homogeneous and particular
solutions) near the boundary layer regions on a wedge type cross-section of a laminated
composite strip under generalized plane deformation. For this we rely upon Lekhnitskii’s
representation for displacements, and the Stroh formalism, which has been found to be
useful for calculating the asymptotic solution for the free edge problem under uniform
extension (Zwiers et al., 1982). This solution procedure is extended here to the general cases
of deformation involving curvature, twist, as well as extension so that the uniaxial tension
or compression, pure bending and torsion or a combination of these may be treated in
terms of loading. Moreover the nature of the asymptotic solution including the mode mixity
is discussed. The complete numerical solution for various wedges including delamination
cracks 1s reported separately in the associated paper (Kim and Im, 1994).

In Section 2.1, the problem under consideration is described, and then based upon
Leknitskii’s formulation and the Stroh formalism under generalized plane deformation, the
solution form for stress and displacement field is obtained, and the asymptotic solutions
from the eigenfunction expansion are presented. In Section 2.2, the near field conditions
for wedge problems are extended to lead to the structure of solutions, which consist of
homogeneous and particular solutions for stress and displacement. The asymptotic form
of homogeneous solutions for stress and displacement, including the stress singularity, is
determined in Section 3. In Section 4, the existence of the polynomial type particular
solutions in a composite wedge under generalized plane deformation, subjected to the
aforementioned generic loadings, is investigated, and numerical results and discussion for
particular solutions are followed in Section 5.1. In Section 5.2, some results are discussed
regarding the so-called mode mixity for a singular stress field near a wedge, which is a
measure of the ratio of the singular shear stress to the singular normal stress ahead of a
wedge tip: it is found that for certain cases, the mode mixity is independent of the loading
or the remote boundary conditions. Finally concluding remarks are made in Section 6.

2. FORMULATION OF THE PROBLEM

2.1. Generalization of the plane deformation problem

Consider a laminated composite strip, the cross-section of which contains wedges,
subjected to general end loadings such as uniaxial tension, pure bending and/or torsion
(see Fig. 1). Each ply of the composite laminates lies in a plane parallel to the x,—x; plane,
and the ply orientation is defined to be the counter-clockwise angle, viewed from the top,
that the fiber direction makes with the x;-axis. We assume that the laminate dimension in
the x; direction (laminate length) is sufficiently large compared with the laminate thickness
so that the state of strains and stresses depends upon only the two coordinates x, and x,
under the aforementioned loadings ; the laminate is then said to be in the state of generalized
plane deformation on the x,~x, plane. This class of deformations includes also the well-
known generalized plane strain deformation under lateral tractions that do not vary along
the laminate length. Note that the displacement in the direction of the laminate length may
not disappear in such a generalized plane strain deformation although the normal strain in
this direction is identically zero; only when there exists appropriate material symmetry,
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Fig. 1. Composite wedge under generic loadings.

both the displacement and normal strain in the x; direction will disappear and generalized
plane strain deformation be reduced to a plane strain deformation.

Let u, ¢, 0; denote the Cartesian components of displacement, strain and stress,
respectively. For generalized plane deformation, we have the equilibrium equation, strain-
displacement relation and stress—strain relation:

oy=0 (i=1-3,=1,2) (nobody force), (1a)
81/ = (ul.j+ui‘i)//2" (lb)
U[i = Cijkm‘glmn Ci/'km = Cjiem = Ckmi/’ (lC)

where C,,, are 4th order stiffness tensors, and the comma indicates the partial differentiation
with respect to x;. Note that the aforementioned governing equations and all relevant
equations to follow, in principle, have to be written for each of the two adjacent plies at a
wedge, and we employ the expressions without “prime” for the upper ply and the expressions
with prime for the lower ply. We state the expressions only for the upper ply whenever we
can deduce the expressions for the lower ply from those for the upper ply. We suppose the
loadings of uniaxial tension, pure bending and torsion, only, which result in the state of
generalized plane deformation in the composite strip, and make the problem two dimen-
sional.

When the aforementioned loadings are applied to the ends of a composite strip and
when six rigid body modes are neglected, from the constitutive equations and compatibility
relation the displacement component u; can be obtained as in Lekhnitskii (1963) :

U(X1, X2, X3) = Ufx),X5) + 8, (— A2x3/2— A4x,X3)
+0,0(— A:X3 24+ Aux1%3) +05(Aox + A3+ A1) x5, (2)

where ¢, is the Kronecker delta; A4, is a deformation parameter related to axial extension
along the x;-axis; 4, and A, are parameters related to curvatures in the x,—x; planes and
the x,—x, planes, respectively; and A, is the parameter related to twist along the x;-axis.
With the aid of eqns (1b,c) and (2), we can show that equilibrium equation (1a) leads to

(Cir23A44+ Ci133A42) + (CiazzAs — Ciay344)

*U, oty U,
+Ciin St +(Cllk2+Ci2kl)—k +C1‘2k2'57k =
X3

ax2 0x,0x, 0. 3
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The general solution for U{x,, x,) in eqn (3) is represented as the sum of the homogeneous
and particular solutions

U(xy, x,) = U:h(xlaxz)“‘ UP(xy, x2), (4)

and U and UP? satisfy the following equation, respectively,

orur Uk cPur
Ciiki _a“;%/i +(Ciira+ Ciaer) m +Cz’2k2?‘; =0, (Sa)
o*U? ocUp or U
Cf A 4 Ci i2k A i2
1k1 ox? +(Cite2+ Cianr) 2%, 0x, 242 o

+(Ci23ds+ Ciy33A45) + (Ciazzds — CizAs) = 0. (5b)
Note that eqn (5a), obtained when the deformation parameters A; (i = 2, 3, 4) become
zero, is just the governing equation for the generalized plane strain deformations. Moreover,
this is an elliptic type of partial differential equation, characteristics of which are complex.
In terms of the complex characteristics, the homogeneous solution UP may be written as
(Stroh, 1962 ; Ting, 1986 ; or Suo, 1990):

6

U (x),x5) = Z vaf(z),  ze= X+ wx,  (k=1-6), (6)

k=1
where p, are complex or purely imaginary eigenvalues to be determined, and f(z;) is a
functipn of complex characteristics z,. Substituting eqn (6) into eqn (5a), we obtain the
equations:

M (), =0,  (m=k)
where

M () = Cupn + e Cirjo+ Ciapp) + 14 Cg o
For the existence of nontrivial solutions, we have
det[M,] = |My| =0,

and the solutions of this sextic equation yield three pairs of complex conjugate eigenvalues
(Stroh, 1962 ; Ting, 1986; or Suo, 1990),

#k:ﬂk+3’ (k: 13253)5

and three pairs of associated eigenvectors v, can now be obtained through a proper
normalization and satisfy the following equation

Vig+n = O (k=1,2,3).

In this work we assume that the eigenvalues y, are distinct. Discussion of the cases wherein
M has a multiple root can be found in Ting and Chou (1981).

As the first step towards obtaining the asymptotic solution, we rely upon the power
type eigenfunction for f(z,) as given by Wang and Choi (1982) and Ting (1986)
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f@) = ¥ Cud™ 04D (k= 1-6), ™

which leads to the expression for the homogeneous solution

UrGryxs) = 3

n=1 k

3
Z [Cknvt'k22"+ ! + C(k+ 3);’15%22"+ ! ]/(l + 6n)’ (8)
-1

where an overbar denotes the complex conjugate; C;, and Cy 1), are complex constants,
and the subscript X means the three pairs of eigenvalues. Here the eigenvalues J, are to be
determined from homogeneous equation of the so-called ““‘near field”” conditions, including
the traction conditions and interface continuity conditions. The coeflicient C,, is dependent
upon the associated eigenvalues J,, and it can be determined within an arbitrary constant
when ¢, is obtained.

From the structure of the partial differential eqn (5b), the particular solutions for the
displacement UP may be written in a generic complete quadratic polynomial. However, this
will involve total 30 unknown constants (15 for each ply) for the strip at hand when rigid
body modes for the strip are neglected, and therefore it would entail extremely complex
algebra. For a systematic approach to determining the particular solutions UP, we may
take advantage of the type of expression as given by eqn (8), which satisfies the equilibrium
eqn (5a) identically. Careful examination shows that we can represent a generic quadratic
polynomial, with neglect of rigid body modes, in the following form :

2 < l 2 < 2 -2
UP(x1,Xx2) = Y [Drovuzi+ Digluzi] + 5 Y [Dkll’iklf+Dk15ikf/?]+%/wxi C))
=

k=1

where D, and D,, are complex constants to be determined and A, are real. Note that the
addition of an arbitrary single quadratic term, like the last term %/l,-xf above, makes the
right hand side of eqn (9) a complete quadratic polynomial of 15 terms for one ply; thus
there are total 2x 15 = 30 terms for the composite wedge of the strip with neglect of the
six terms associated with rigid translation, for there are six complex terms from Dy, and
D, and three real terms 7, in eqn (9). Then the three real constants 4; are now determined
from substitution of eqn (9) into eqn (5b):

(C1123A4+ Cil 33A2)+ (Ci233A3— Ci213A4) + Cilkl)’k = 0 (10)

The complex constants D,, and D,, will be determined from the non-homogeneous equa-
tions resulting from the near field conditions. The aforementioned approach is relatively
simple, and moreover systematic in that it will provide a clue for introducing a logarithmic
function (Zwiers et al., 1982), as will be shown in Section 4.2, when the polynomial form
of eqn (9) does not work.

For the convenience of further development, we introduce the cylindrical coordinate
(r, ¢, 2) to write z; = x, + X, in r and ¢,

Ze = X1+ Xy = 1, {=Cos P+ sing. an

The physical vector or tensor components in the cylindrical coordinate (r, ¢, z) are equi-
valent to the corresponding components in the Cartesian co-ordinate system (X;, X,, x3)
which is obtained by rotating the coordinate system (x,, x,, x;) counterclockwise by ¢
(Fig. 1), i.e. 6y = u,, i, = u,, th, = u., 6, = g,, etc. where **°” indicates the components
referred to the rotated Cartesian coordinate system (%,, X,, x;). We hereafter use these two
notations interchangeably for convenience. Now the displacement and stress components
in the Cartesian coordinate (X, ®,, x5) (or in the cylindrical coordinate) can be written as:



614 T. W. Kim and S. Im
r, §.x3) = UP(r, )+ UP(r, §) + il (r, , x3) = di(r, §) +1i8 (r, p. ), (12a)

Gy(r, @) = S3(r, ) +65(r, §), (12b)

where

(. ¢) = OUNr.¢), (.. x3) = UP(r, )+ (r, §, x3),
and the expressions for Ur, Or, i, é%, 6% are given in Appendix A. These expressions may
be written for each ply of the laminate, for example, the upper ply and the lower ply: in
which case we use the above expression for the upper ply, and the “primed” expressions
for the lower ply.

2.2. Solution structure under generalized plane deformation

To determine the structure of the asymptotic solutions including the stress singularities,
we need to consider the near field conditions for the composite wedge in Fig. 1. Assuming
the two plies are perfectly bonded along the interface, the near field conditions may be
written as : traction condition: g,, = 645 = 0, =00n ¢ = a,0,, = 04 = 04, =0on ¢ = o’
if wedge faces are opened, or 0,, = 04, = 0,45 = 04, = 0, [uy] = [044] =0 on ¢ = + = for
a crack if crack faces are in frictionless contact. The interface continuity condition is
[0:p] = [64p] = [64:] =0, {4,] =[u,] =[] =0 on ¢ =0 where [ ] indicates the dis-
continuity of the quantity in it across the ply interface. Substituting (12a,b) for displacement
and stress into the near field conditions, we obtain a system of 12 x 12 linear equations for
Cins Cics 3yns Chons and Ciy 3y, OF Dy, Dy, Dy, and Dy, (k= 1-3, o = 0, 1), which can be
written as

kel

"éan(én)q = Ab; +r(A:by+ Asb; + Asbs), (13)
=1

n=

where K, is a complex valued square matrix whose elements depend upon é,,, and by, by, b,
b, are constant column matrices related to material constants and the near field conditions,
and q is a 12 x 1 column matrix whose elements are Cy,, Cp i 305 Cin. and Ciiy 3y, OF Dy,
Dy, Di,and D;, (k = 1-3, a = 0, 1). The detailed expressions for K.(3,) and b, (i = 1-4) in
terms of wedge angles and material properties are listed in the Appendix B. To satisfy eqn
(13),weleto,=0and d, = 1:

K.(0)g™ = 4,b,, K.(1)q"' = 4,b,+ A3bs+ A.b, (14a,b)

and obtain two particular solutions ¢™ and g°!, where ¢* and ¢” indicate the column
vectors

qPQ = [D10=D207D30a510’D-205 D_3O>D,10’D/203D/309D—/]D’D_/ZOsD—g()]T:
qp] = [DII’DZUD3laD_]lsD_219D-3hD/ll?D/ZISD/Enl;E,llaD—’leD_al]T'

This is, however, not the only solution for q in eqn (13). We see that q has the following
homogeneous solution

K.(6,)¢" =0, (15)
where

qh = [Clm CZm C3n; C4n9 CSna Cem Cina Cén’ C;n» C"in’ C;m Cén]T'

Now the substitution of q", ¢ and ¢*' into eqn (8) and eqn (9), respectively, gives the
q,.4q q
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solution for U? and UP, and eqns (12a.b) then yield the complete solution structure for the
asymptotic displacement and stress. It is noted that the particular solution g is related to
the uniform extension with neither of curvatures and twist, wherein only 4, is nonzero,
and this case was reported by Zwiers et al. (1982). On the other hand, the particular
solution g™, related to the parameters A,, 4, and A,, is associated with curvatures and
twist. Note that these terms often appear even under the simple uniaxial tension due to the
coupling of the elastic constants in composite laminates. In the subsequent section, we
discuss the existence of the homogeneous solution q" and the particular solution g™ and
q°', respectively.

3. HOMOGENEOUS SOLUTIONS

For the existence of nontrivial homogeneous solutions from eqn (15), we have
IK.(3,)] =0, (16)

which determines the cigenvalues §,. When the eigenvalues &, are known, within unknown
constants the eigenvectors q" are computed from eqn (15) by a proper normalization. The
asymptotic form of homogeneous solutions for the stress and displacement is given by

[e3)

3
ﬁ?(r’ (l)) - Z z rb”Jrl[Ckn :AC;\) ! +C(l\+3) Ikgz * l] (1 +5n)s (173)

n=1 k=1

&

3
Z Z rn Ckn t]kSk +C(A+3)nG éf"]a (17b)

n=1 k=1

where the expressions for H, and G,;, are given in Appendix A. To take only the real part
of eqns (17a,b), we may introduce

Cin = 1/2(y1,— Iy>,)by,,  for complex o, Im [6,] > 0, (17¢)
Cin = 1/2y3,by, forreal o, (17d)

where b,, are eigenvectors, computed by a proper normalization, and v,,, 7,, and v, are
real constants to be determined to complete the solution. It is noted that the unknown
solution vectors y,,, 7., and ys,, determined from the far field condition or the remote
boundary condition, will take different numerical values according to the way the eigen-
vectors by, are normalized, but the resulting solution C,, will remain unchanged. Denoting
the unknown constant y,,, y,,, ¥3. by B, for simplicity, we may recast eqn (17a,b) into the
following form:

W (r. ¢) = Z B.gin(r, §30,), ir,¢) = 2 Bufin(r, @ :6,), (17¢)

n= n=

where g,, and f;,, denote the known eigenfunctions corresponding to the n-th eigenvalue 4,

The power type eigenfunction expansion (7) fails to be complete when the algebraic
multiplicity is greater than the geometric multiplicity, i.e. there are not sufficient sets of the
power type eigenvectors associated with these multiple eigenvalues (Dempsey and Sinclair,
1979; Ting and Chou, 1981). Dempsey and Sinclair (1979) resolved this difficulty by
introducing logarithmic eigenfunctions which ensure the existence of the sets of eigenvectors
enough to span the solution. Subsequently this was extended to the problem of anisotropic
composite laminates by Ting and Chou (1981). The existence of the logarithmic eigen-
functions can be examined by calculating the algebraic multiplicity of the eigenvalues
and the rank of the associated coefficient matrices in eqn (15). For the present problem,
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the homogeneous solution is nothing but the solution for the generalized plane strain
problems within the context of which the complete solution was reported in Ting and Chou
(1981).

4. PARTICULAR SOLUTIONS

4.1. Existence of the polynomial form of particular solutions
To obtain the particular solutions for stress and displacement when 6, are 0 and 1, we
may choose eigenvector D,, (n = 0, 1) as

1 A
Dkn = E(akn - lakn)7

where g, and 4, are real. In the cylindrical coordinate of eqn (11), the displacement and
stress components ¥ and stress 6% in the rotated Cartesian coordinate system may be
written as

T
@, g, x:) = 3 3 7 ag, Re (HR G ) + g, I (HR D (146,) +# (7, ¢, X5),
5,=0 k=1

(18a)

5,=0 k=1

| 3
3. @) = 3. Y rla Re (Giulir) +di, Im (G L] + 65(r, §), (18b)

where

) (r, ,x3) = 3A;r* cos® p+ul (r, ¢, X3),

3
Ufj(rs Py =r Z Ciixita C05¢+Cﬁ33A1
k=1
+ "[C,:/}} cOS ¢A2 + C,'j33 sin ¢A3 + (Cij23 COos (b_ C,‘, 13 Sin ¢)A4],

<A __ A oA __ A
ur/" - umlmir Uij - omnlmilnj

with /; being the transformation matrix given in Appendix A.
For convenience, we set

aP = {(1109 @30, 305 A0, G20, d30, A0, A10s @105 A0, G205 dgo}T,
ah = {an’azlaasisdll,dzlsdalaa;1,0/11,‘1’11,d’1|,d/21=d’3|}-r-
Equations (14a,b) are then replaced by
K*(0)a™ = 4,b,, K*(1)a? = A,b,+ A;b;+ A,b,, (19a,b)

where K* is now a real valued 12 x 12 square matrix. We now discuss the solution of eqns
(19a,b). Existence of solution a® and a”' depends upon the roots of the eqn (16). When
d,=0 and ¢, =1 are not the roots of eqn (16), the matrices K*(0) and K*(1) are not
singular and the unique solutions for aPo and a® are assured. On the other hand, if 6, =0
and 6, = 1 are the roots of the eqn (16), i.e. the eigenvalues for the homogeneous solution,
a solution of a* and a” in eqns (19a,b) exists if and only if
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So'by =0, s;°(4;b+A45b;+ A4,b,) =0, (20a,b)
where s, and s, are eigenvectors of K*7(0) and K*T(1), respectively,
K*T(0)+s, =0, K*T(1)'s, =0.

If the consistency conditions (20a,b) hold when 6, = 0 and J, = 1 are the roots of eqn
(16), the solution vectors a* and aP' may include the homogeneous solution part in addition
to the terms associated with the deformation parameters 4,. However, this homogeneous
solution part may be neglected since it has been included in the homogeneous solution.
Substitution of a® and a™ into eqns (18a,b) with §, = 0 and J, = 1, respectively, we can
then obtain the following polynomial form of particular solutions

& = o+, 8% = 6% 460, (21a,b)

where

3
o = Z [awo Re (Hyzy) + dio Im (Hyz,)] 4+ 0134, X3,
k=1

GPo

3
50 = z [awo Re (Gijk) +dgo Im (G )] + Crinz3 A biljs
k=1

3
=Y [ay Re (Hyzi) + dp Im (Hyz0)1/ 241 (r, ¢, X3) — 834, X3,
K=

%

3
Z [a.; Re (Gijkzk) +d;, Im (Gijkzk)] + &f](r, ¢) =~ Conaad, lmiln/"
k=1

So far we used the Stroh formalism to determine the structure of the complete solution and
to investigate the existence of the polynomial type particular solutions. From eqns (21a,b),
it turns out that the polynomial type particular solutions for displacement and stress take
quadratic and linear form, respectively. However, as discussed above, these solutions are
valid only when é, = 0 and §, = 1 are not the roots of the eigenvalue eqn (16) for the
homogeneous solution, or when the consistency conditions (20a,b) are fulfilled if 6, = 0, 1
are among the eigenvalues for the homogeneous solution.

4.2. Logarithmic particular solutions

If the consistency conditions (20a,b) do not hold when §, = 0 and 1 are eigenvalues
for the homogeneous solution, the particular solutions of polynomial form for displacement
and stress due to deformation parameters 4,, A,, A;, and A, do not exist. In such a case,
instead of using eqns (18a,b) we use the following logarithmic eigenfunction, as in Zwiers
et al. (1982),

1 0 3
CERSES WS (lnr+ = ){Z [ahn Re (L) + g I (kacin+')]/(1+6n)}
8,=0 nj (k=1

+ ﬁ: (r) ¢9 X3), (22&)

1 3
B = Y r <lnr+ = ){z [0 Re (Gl + gy Im (G,,«kcin)l}wf,(r, 9). (22b)
n k=1

8,=0

n

Employing these expressions for the particular solutions and subsequently applying the
near field conditions, we can obtain the following linear equations
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K*(0)a™(0) = 0, {(,f; K*(O‘,,)a"“(é,,)]} = A:b,, (23a,b)

6,=0

K*(D)a™ (1) = 0, {Ai [K*(5n)a"'(5,,)]} = A:b, +4sb;+A4b,. (24a,b)

3,=1

The solution aP for eqns (23a,b), in conjunction with eqns (22a,b), will give the particular
solutions for the deformation parameter 4,, which represents the uniform extension, and
it was discussed in Zwiers et al. (1982). We therefore focus upon the solution a® for eqns
(24a,b), which constitutes the particular solutions for the deformation parameters A4,, 4
and A4,, which are related to the curvature about the x,-axis and the x,-axis, and the twist
along the x,-axis, respectively. For simplicity, we write eqns (24a,b) as

cK* oaP
K*ah = 0, % ah + K* 3. = A;b,+A:b;+ A,by, (25a,b)

where all quantities on the left hand side of eqns (25a,b) are evaluated at 6, = 1. Equations
(25a,b) comprise a system of 24 equations for a” and (0aP:/dJ,), whose elements are a,,,
Gpis Ay 4y and éay, /00, 8dy, /00, Cay,[00,, ddy |80, (k = 1-3).

The system of eqns (25a,b) has a unique solution for a® if (Dempsey and Sinclair,
1979)

OV |K*|jésy #0, N=n—m, (26)

where n and m are, respectively, the order and the rank of K*, However, it is rather difficult
to prove eqn (26) analytically or numerically. Instead, we may regard eqns (25a,b) as a
system of 24 equations for a™ and (¢a”/éd,), and solve the system numerically. In general,
aP is unique while (éa”/d5,) has a particular solution and at least one arbitrary solution.
The fact that (¢a®/¢d,) has at least one arbitrary solution is obvious from eqn (25b) because
the coefficient of (éaP/dd,) is K*, which has singularity of at least order one. However, one
arbitrary solution for (¢a”/dd,) is equivalent to the homogeneous solution for §, = 1, and
this term may be left out in the particular solution once included in the homogeneous
solution (17a,b). Substitution of a™ and (da”/dd,) into eqns (22a,b) with 4, = 1 provides
the particular solutions for displacement and stress, including logarithmic terms:

3
# =Y {ay Re[Huzi 2z — D] +dy, Im [Hyz 2Inz, — 1)]} /4

k=1

+ Z |: P Re(HA4k)+ F Im(H,A A):I 244 (r, , X3) — 03 A 1 X3,
P

3
o = Z [a Re (GipziInz) +dpy Im (G iz In 2]
k=1

+ Z [‘*RG(G,/A k)+'o

A=1 n n

Im (Gr/kﬁk )} + Ul/(r ¢) Cmn33A lmllnj

The particular solutions :f* and 6%, constructed from a™ and (¢a™/¢é,) and related to the
deformation parameter 4,, will include the terms like z, In z; and In z,, respectively (Zwiers
et al., 1982). Taken together, we can obtain the particular solutions (22a,b) as
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B = PR, G = 8% 6Y. (27a,b)

From the aforementioned discussion, ahead of the wedge tip the asymptotic stress includes
Inr and rinr terms as r goes to zero while the asymptotic displacement rInr and r’Inr
terms. Although the solutions obtained here are for composite laminates for which the
polynomial type particular solutions do not exist, application of the logarithmic type
particular solutions to composite laminates for which the polynomial type particular solu-
tions exist yields aP» = 0 and a” = 0 in eqns (23a,b) and (24a,b), respectively.

5. NUMERICAL EXAMPLES AND DISCUSSION

5.1. Numerical results for particular solutions

In this section, we choose three examples, the free edge problem, and the opened and
closed delamination crack problems, to examine particular solutions, and to check whether
the polynomial type particular solutions exist or not.

For the purpose of illustrating a particular solution, we consider a case wherein each
of the deformation parameters A,, 4,, A; and A4, is applied alone, respectively. A solution
for generic loadings, such as uniaxial tension, pure bending, torsion, or a combination of
these loading modes, may be obtained from a linear combination of the solutions for these
four cases (when there are no configuration change like the contact of crack faces) with the
aid of the end conditions (Kim and Im, 1994): these end conditions represent the force
resultants and the moment resultants in terms of stress, that is, implicitly in terms of 4,
(i=1,2,3,4). The special cases of 4A,b,+ 4;b;+ A4b, = 0 are excluded here. In each case,
eqns (20a,b) are then rewritten as follows,

So*b;, =0, s,'b,=0, s,‘b;=0, s:b;=0, (28a,b,c,d)
where s, and s, are eigenvectors of K*T(0) and K*"(1)
K*T(0)s, = 0, K*T(I)s, = 0.

For numerical computation, we employ the following material data for the graphite
epoxy T300/5208 (Whitcomb, 1989),

E;, =134 GPa, E;=E;=10.2GPa,
Gir= G,z =552GPa, Gp;=3.43GPa,

vir=v,,=023, vy =049,

where L, T and Z indicate principal material axes along fiber, transverse and thickness
directions, respectively. From this data, the eigenvalues u, (k = 1-6) and the associated
eigenvectors vy are obtained. The values of 4, are then obtained from eqn (10) and 7, Hy
and G are calculated from the expressions in Appendix A. From these results, we can
finally calculate K*(0), K*(1), b, b,, b; and b,. Ideally speaking, fiber reinforced laminated
composites must be transversely isotropic with the axis of symmetry lined up along the
fiber direction. However, the material data above, which has been determined exper-
imentally, slightly deviates from the transversely isotropic case, so that no double roots
appear in the eigenvalue p.

From the computational results, it turns out that for all of the ply orientations, the
integers J,, = 0 and 6, = 1 are both roots of the eigenvalue eqn (16) for the homogeneous
solution. Moreover, there are three eigenvectors of K*T(0)s, = 0 and K*T(1)s, = 0 for the
opened delamination crack problem, and similarly the four eigenvectors of each matrix for
the closed crack, while there are two eigenvectors of K*T(0)s, = 0 and one eigenvector of
K*"(1)s, = 0 for free edge problem. For each of these three cases, we now check whether
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Fig. 2. Existence of the polynomial type particular solutions for free edge problem under uniform
extension (4,).

the polynomial type particular solutions exist or not. For the opened and closed delami-
nation crack problem, the consistency conditions (28a—d) are all satisfied by every set of
eigenvectors regardless of any combination of ply orientations. This means that the poly-
nomial type particular solutions exist for all of the fiber angles under typical deformations
such as extension, bending and torsion. On the other hand, for a free edge problem: (i) eqn
(28a) holds for [6/6] laminates which are of a single homogeneous ply, the cross ply, the
angle ply of [#/—6] and the first special family of [6/6'] laminates, which are represented
by the line starting at {0/90] and ending at [90/0] in Fig. 2; (ii) eqn (28b) holds for all of
the ply orientations; (iii) eqn (28¢c) holds for [#/6] laminates, the cross ply, the type of angle
ply [6/ — 6] and the second special family of [#/6’] laminates (see Fig. 3); and (iv) eqn (28d)
holds for [6/6] laminates only. These results imply that when the deformation parameter
A,, related to the extension along the x;-axis is imposed, the polynomial type particular
solutions exist for [6/6] laminates, the cross ply, the angle ply of [6/—6] and the first
special family of [6/6’], while for 4., the polynomial type particular solutions exist for all
combination of the ply orientations. For the deformation parameter A4;, the polynomial
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[6/~-86] laminates
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—45

—860
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Fig. 3. Existence of the polynomial type particular solution for free edge problem under curvature
in the x,—x; plane (A4;).
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type particular solutions exist for [6/6] laminates, the cross ply, the angle ply of [6/ — 6] and
the second special family of [0/6’]. However, when the deformation parameter 4,, related
to twist along the x;-axis, is applied, the polynomial type particular solutions hold for [6/6]
laminates only. These are summarized in Table 1.

5.2. The nature of the singular stress field

Now, we examine the nature of the singular stress field at the tip of a wedge, including
the structure of solution. Particularly we investigate the linkage between the near field mode
mixity and the far field mode mixity, which implies the relation between the two ratios of
shear stress to normal stress at the wedge tip and at the remote boundary. It will be
illustrated how the elastic symmetry, the multiplicity of the singular eigenvalues ° and the
existence of the imaginary part in ¢’ are linked to the nature of the singular stress field
including the mode mixity. To discuss the mode mixity we define the two phase angles ®¥
and ®% for a singular asymptotic field resulting from a real singularity J§; ahead of the
wedge tip as

D) = lrljrol tan™' {Ulz("s();5?)/022(”,0;&)}’ (29a)
B35 = lim tan™" {2,(1,058)/02:(7,058)} (29)

where 7,,(r, 0; §;) indicates the singular asymptotic stress field associated with ;. Further,
let @7 and @ denote the corresponding phase angles of the applied loading on the remote
boundary.

Figures 4-6 show the singular eigenvalues for various wedge angles [o/a] in laminate
strips of a single homogeneous ply or [6/6] laminates. In general, there are three discrete
real singular eigenvalues, which we name the first, the second and the third eigenvalue,
respectively. Note that for a real eigenvalue with no multiplicity, there exists one scaling
parameter K, characterizing the corresponding singular stress field when eigenvectors by,
have been properly normalized,

/2n L=

K> 3

0(r,0;8;,) = ——=Re [ Y bk,‘.r,-k,-,‘:|, K, = /2my;,. (30
v

In this expression, only the scaling parameter K, is dependent upon the far field loading at

the remote boundary. That is, for a real singular eigenvalue J; the loading at the remote

boundary effects the asymptotic stress field associated with &} only through the scaling

parameter K,. As a consequence the near field mode mixities @F(5;) and ®%(5;) will be

Table 1. Existence of the polynomial type particular solution under generic deformations

Two types of Delamination crack
wedge problem (either opened or closed) Free edge
Loading parameters
Ply orientation A, A A, A A, A, As Ay

[6/6] Laminates

Cross ply laminates

[6#/— 6] Laminates

The first special family
The second special family
[6/6"] Laminates

(===l el el e
S oo oO o
oo oooC
S oo OoOoOO
X X oo o
[l el e o e e}
X OoOX oo o
X X X X X ©

(1) [6/¢’] laminates mean arbitrary ply orientations except for [0/0] laminates, the cross ply, the angle
ply of [6/ — 8] and two special families of [8/6’] laminates described in Section 5.

(2) “0”" means the polynomial type solutions exist.

(3) ““ x” means that the logarithmic type solutions exist.

(4) The two special families of [6/6'] laminates are depicted in Figs 2 and 3, respectively.
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Fig. 4. The first singular eigenvalues for various wedge angles in laminates of a homogeneous ply.

independent of the far field mode mixities @ and ®3 if K, is non-zero (when &; is a single
root).

For 8 = 0 and 90, the laminate becomes exactly orthotropic, so that the modes I, 11,
III, which are related to the stress components o,,, ¢, and ¢,; ahead of the tip in the
wedge, respectively, are decoupled from one another. The first eigenvalue &} is associated
with the mode I, the second eigenvalue &% with the mode II and the third eigenvalue 03
with the mode HI. For each of the three modes, which have different singularities, there
exists a single real scaling parameter characterizing the near tip field associated with the
respective singularity. The phase angle ®¥ will be 0 and =/2 for the first singularity 6] and
the second singularity 83, associated with in-plane deformations, respectively, and the phase
angle ®¥ will be =/2 for the third singularity 8%, associated with anti-plane deformations.
Which of the three discrete singularities appears depends upon the remote loading. As
shown in Fig. 5, the second singular eigenvalue d3 for 8 = 0 disappears at « = 128.3°. This
threshold wedge angle is slightly different from o = 128.7°, which is for the case of isotropic

wedge angle o (degree)
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1

Fig. 5. The second singular eigenvalues for various wedge angles in laminates of a homogeneous

ply.
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Fig. 6. The third singular eigenvalues for various wedge angles in laminates of a homogeneous ply.

or transversely isotropic materials (Zhao and Hahn, 1992), because the material considered
here is not quite transversely isotropic as discussed in Section 5.1.

For the ply orientations other than 8 = 0 and 90, the laminates behave like a monoclinic
material with the x,—x; plane being the plane of reflection symmetry, so that the defor-
mations involving the stress components ¢, and a,, are decoupled from the deformations
involving the rest of the stress components. The numerical results show that the first singular
eigenvalue J7 is associated with the mode 1, and the second and the third eigenvalues J3,
84 are related to the mode I and I11, which are coupled with each other in general. Similarly,
the phase angles ®f and ®F will be both zero for the first singularity, and both n/2 for &%
and d%. Regardless of the ply orientation # and the wedge angle =, |5}| > |35] > |83].

The singular eigenvalues and the phase angles for various wedge angles [«/«] in a
laminated composite strip of different adjacent plies [0/0'] are shown for [60/—45] and
[90/0] laminates in Figs 7 and 8. The results for the [60/ — 45] laminate were found to be
typical of those for the angle ply laminates [#/0']. As in the laminated strips of a single
homogeneous ply, there exist three eigenvalues ¢4, ¢% and ¢% for most of the wedge angles,
however, the second singular eigenvalue & disappears around & = 125°-130" depending
upon the ply orientations [6/6], and the third singular eigenvalue 6% disappears at o = 90°
regardless of combinations of ply orientations [6/6°] (Figs 7 and 8). Hence only one
singularity ¢} appears for the free edge problem. The eigenvalues * become complex for
large wedge angles =, i.e. when a wedge approaches a crack, as shown in Figs 7 and 8. As
in the case of single homogeneous ply, the inequality |87 > |03] > |83] still holds for most
of the wedge angles except for large values of o near 180" wherein two of the three singular
eigenvalues become complex. For each of the real eigenvalues (with no multiplicity) in
laminated composite strips of different adjacent plies, as in the case of a single homogeneous
ply. there exists one real scaling parameter K, characterizing the associated singular stress
field for a given normalization of the eigenvectors b,,. The asymptotic expression for the
near tip stress field is given as eqn (30) for the upper ply, and for the lower ply it will take
the same form with the primed quantities but with the same K, as for the upper ply. As a
consequence, the near field mode mixities @f and ®F associated with a real singular
eigenvalue will be independent of the far field mode mixities. once the associated eigenmode
is activated by the far field loading, which is probable under a generic loading due to the
coupling of elastic constants particularly for angle ply laminates. In Figs 7 and §, ®F(6})
and ®F(47), associated with the real dominant singularity o}, are plotted for illustration.
Both of @ and ®F increase abruptly just before the eigenvalue 6} becomes complex as the
wedge angle « approaches 180°. This indicates that the shear stress components ¢,, and o,;
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become relatively important in the near tip field as a wedge approaches a crack, and
therefore this suggests that the shear failure may be relatively important as a wedge
approaches a crack.

Because of the coupling between the elastic constants, resulting from distortion on the
interface, the mode decomposition does not occur in a laminated composite strip of two
different adjacent plies, except for the special case of an orthotropic material [90/0]. For
the [90/0] laminate, the deformations associated with the stress components o,,, 6;,, 033
and ¢, are decoupled from deformations related to o,; and 5,. The first and the second
eigenvalue §} and d5are associated with the stress components o,,, 0,,, 033, 0,2, and the
third eigenvalue 65 with the stress components o,; and ;,. Note that this is consistent with
the case for a laminated strip of a single homogeneous ply [90/90] or [0/0].

For complex singular eigenvalues &°, which always appear as a pair of complex conju-
gates, there exists a complex scaling parameter characterizing a wedge tip field for a given
normalization of the eigenvectors b,, as in an interfacial crack of anisotropic materials (see
Suo, 1990). Let &¢ and K, denote the complex singular eigenvalue and the complex scaling
parameter, respectively. Then the corresponding singular asymptotic stress field may be
written as

Re(d7)

o3(r,0;85) =

NG

[Re (K,r")6. +Im (K. r™)él], (31
[y ]

where

3
I’I = Im (5S)3 Kl‘ = AV 2n(yls_iv2x)a &llj = RC [ Z (bk.vrijk+b(k+3).yfijk)i|s
k=1

3
5'},! = —Im |: Z (berljk+b(k+ 3)sfljk):|' (32)
k=1

The complex scaling parameter K., which affects the near field mode mixities now, is
dependent upon the applied loading as well as the geometry and the material properties.
Consequently the mode mixities ®f(6!) and ®F(J;) are dependent upon the mode mixities
of the applied loading as well as the geometry and the material properties of the two
adjacent plies.

For a wedge with o close to 180°, the two eigenvalues appear as a conjugate pair of
complex numbers and the remaining eigenvalue as a real number. The near tip stress field
may be written as a sum of these two singular terms:

Re (53)

Jn

K.’

o

o}(r,0) = |:Re (K.r")éh+1Im (K"rin)ﬁg} N

Re [i bk.‘x,ﬁ,‘}. (33)

For o = 180°, this will reduce to the asymptotic form for an opened interfacial crack in an
anisotropic material, which was reported by Suo (1990).

For a closed interfacial crack (« = 180°) in the absence of friction, only real singularity
8¢ = —1/2 appears as a double root, and there exist two real parameters K", K{? charac-
terizing the near tip singular stress field

(1) (2) 3

0| K 2 K;

where

SAS 32:5-E
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KD = 2, KO = famy?.

The relative magnitude of the two real parameters K", K{® will depend upon the applied
loadings at the remote boundary. This is the consequence of the multiplicity (double roots)
in the eigenvalue o} = — 1/2.

For the free edge problem, for which only one stress singularity occurs, the existence
of one single scalar scaling parameter K, characterizing the near tip stress field around a
wedge is of paramount importance in relation to fracture or failure initiation at a free edge.
To characterize free edge stress field, Wang and Choi (1982) introduced the foliowing six
“boundary layer stress intensity factors” K, defined by

K, =limr %g}(r,0; &). (33)

7

However, the aforementioned discussion shows that only one single real scalar parameter
K, characterizes the near tip stress field around a free edge, and therefore just this single
parameter controls the near field behavior such as fracture or failure initiation at a free
edge regardless of the geometry and the loading mode at the far field, i.e. fracture or failure
initiation will occur for a free edge composed of a given combination of two adjacent
materials only if the parameter K, reaches a certain critical value regardless of the far field
geometry and the loading modes.

6. CONCLUSION

Based upon the Stroh formalism and Lekhnitskii’s representation, the structure of the
asymptotic solution has been examined for the boundary layer on the wedge type cross
section of a laminated composite strip under the generalized plane deformations. A basis
for obtaining the complete numerical solutions to the wedge problems, including free edge
or delamination problems in laminated composite strips under the aforementioned generic
loadings has been established (Kim and Im, 1994).

Numerical results for the case of the graphite epoxy T300/5208 show the following:

(1) For the opened and the closed delamination cracks : a set of consistency conditions
hold for all of the ply orientations, and the logarithmic terms do not appear in the particular
solution for any of the deformations—extension, curvature and twist.

(2) For the free edge, there may exist either the polynomial solutions or the logarithmic
solutions depending upon the combination of the ply orientations and upon the type of
deformations.

(3) There exists a single real scaling parameter for the asymptotic eigenmode associated
with a real singular eigenvalue with no multiplicity, and consequently the near field mode
mixity of a singular eigenmode for a real eigenvalue becomes independent of the far field
mode mixity once the eigenmode is activated.

(4) For the dominant singularity, the interfacial shear stress components increase as a
wedge approaches a crack, which suggests that the shear failure may become relatively
important for large wedge angles.

(5) For a free edge problem, wherein only one real singular eigenvalue exists, one
single real scaling parameter governs the near field response, i.e. fracture or failure initiation
at a free edge regardless of details of geometry and loading at the far field. For a wedge
approaching a crack, wherein a conjugate pair of complex singularities and one real
singularity exist, each of one complex parameter and one real parameter will characterize
the asymptotic stress field associated with the corresponding complex and real eigenvalue,
respectively.
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APPENDIX A
Expressions for U", UP, i, én, &% are given as

k]

gy = 3 ¥ P (CoHyl "+ Coon Ay T 170 48,),

=1 k=1
3

: P . 5
UP(r, ) =r Y, [DyoHuli+ DioHy L) +17 Z %[Dl\lHrkCi +D,, #,{7) +%/vm(”C05 )i
£ P

uM(r, b, x3) = 8, (— Ayx3j2— A, Sin hx3)0,5( — A3x3/2+ Agr cos P x3) +8;3(Asrcos g+ Asrsind + A4 x,,

& = tnd,
2h — < : N C G ¥é, C G’ 3,
di(r, @) = Z Z P [Con Gl + Cir s 13n G20

a=1 k=1

1

a%(r, @) = Z (DG i +D_koGUA] +r Z [D G+ BkIGi/A":_k]
Py K

3
+ {" Z Crmi1 24€08 @+ C i3 Ay +1[Cp32€08 0As 4+ Cppzasin A3+ (C, 23 €08 o — Gy 3 5in ¢)A4]}Im,[w
=

where /; denote the coordinate transformation matrix between (x,, x;, x;) and (¥, X,, x,) given as

cos¢p —sing O
[l]= | sin¢ cos ¢ 0
0 0 1

H,; and G, are nothing but the vector and tensor components transformed from v, and 7, = (Cy + s Cipo2 )i
to the components in the X; coordinate system, i.e. Hy = Culps Gijt = Tk nilsj-

APPENDIX B

In Appendix B, the expressions for K.(3,) and b, (i = 1-4) in eqn (13) are presented in terms of the wedge angles
and the material properties. Substitution of egns (12a,b) into the near field conditions with the aid of the
expressions in Appendix A yields



628 T. W. Kim and S. Im

© 3

Z Z r(S"[CknGi/k(:x):z"(a)+C(k‘3)nc_‘:ik(d)‘:_g”(°f)] = — ConisA L 2) ()

n=1 k=1
3
— r{j Z Comi1 A4 €08 0+ C33 €08 24 + Crppa3 SIN A3 + (Cop23 €08 % — Cpppy 3 SIN a)Att]lmi(a)lni(a)'
k=1
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where G, (), (), G/x(o") and [;;(«") are values evaluated at ¢ = x and ¢ = o', respectively. To represent the
right hand side of eqns (B1) in terms of the loading parameters 4,, A,, A; and 4, only, we write the solution 2,
ineqn (10) as

A= AV A+ AP A+ AV Ay, (B2)

where 4}" (i = 1-3) are functions of material constants. Plugging eqn (B2) into eqns (B1), we can obtain the
expressions for K.(d,) and b; (i = 1-4) in eqn (13) in terms of the wedge angles and the material properties. Let
ij=12forp=1;i=22forp=2;ij=23for p =3, then
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[hI]p = —Cnmzalmx(a)lm(a‘)a bl](p+.‘) = — Craalni0 ) (), [bl](p+6) = Cx//u—c:;s.x\ [bl](p+9) =0,

(2], = —cosa(BL) + Cpus)lm(@(@),  [ba)ip-3) = —cos&'(BL) + Cra) il V().
(B2l = BV +Clias— B — Ciazy - [badproy = 120457 — A7),
[bs], = —(cosaBiZ) +sin 0C,,a 1)l )], (@),
[03]ips 5y = — (cos o BLD +sin e’ Cppy )il Ve,
[bzlm+«) = Blrﬁz) _Br{fZ)i [b3]([7+9) = 1/2(1‘,3(2) —;-Lz)),
(el = [sinaCry — €08 2( B + Crunz )l (90), (%),
[Balipsn = [5in 2 Chpizs —cos &' (B155) + Cruas)l i ) y(er'),
Balpse) = BE" 4+ Clas— B = Cyass [bilpaor = 12057 =2), (pg=1,2.3)
where

3 3
BY = Y Codl", B = Y Chit™ (=12,22,23, n=1-3).
k=1 =1

k



